Biodiversity

The heart and soul of conservation ecology

What's biodiversity in the first place?

Biological diversity

- The variety of life in all its forms, and at all levels of organization.
- The variety and relative abundance of species.
- The genetic, taxonomic, and ecosystem variety in living organisms of a given area, environment, ecosystem, or the whole planet.
- The structural and functional variety of life forms at genetic, population, species, community, and ecosystem levels.

What about just protecting species?

- How do you define a species?
- Isn't this obvious?
- Implications for ESA?
- What about the public?

What's a species?

- Several different concepts
- Typological

God makes the snake

What's a species?

Morphological

What's a species?

Ecological

THE NICHE-RELATIONSHIPS OF THE CALIFORNIA THRASHER.

BY JOSEPH GRINNELL.

BY JOHTH GRINTERS. Thus, California Thrasher (*Theostoma*, ordivirum) is one of the several distinct bird types which characterize the so-called "California, many setting the source of the distinct in our nove than one hundred and sixty miles below that direction uses distingtion and sixty miles below the distinct, not more than one hundred and sixty miles below the source of the source of the source of the source of the distinct, not more than one hundred and sixty miles below the distinct in the tweet california. Must have the source of the source source of the source source of the source 1917; The Auk

What's a species?

BiologicalMayr (1969)

What's a species?

Genetic

BARCODI OF LIFE

Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator

> reft", Erin H. Penton", John M. Burns", Danrel H. Janzeh", and Winnie Hallwachs" oolog: University of Goelsh, Geolsh, OK, Canada NG 2911, "Experiment of Extension, National Maxement of Reine, Wahrgein, DC 20565-5127, wei Spagnement of Extension, Extension, Parketing, Parketing, Parketing, PA 19

methods is given the large A. Appel A. 2014. In a summary set of the start of the

- Millit in	SUMIL
- Courses	Camprin
	amm
FAMILLE	Collema
	Campun

Phylogenetic/Cladistic
Synapomorphies
Switch Republic Republic

What's a species?

Species definitions

• What's a conservation ecologist to do?

Special kinds of species • Keystone • Ecosystem engineers • Indicator • Umbrella • Flagship • Vulnerable • Economic

2

Special kinds of species

- Keystone
- Ecosystem engineers
- Indicator
- Umbrella
- Flagship
- Vulnerable
- Economic

Special kinds of species

- KeystoneEcosystem engineers
- Indicator
- Umbrella
- Flagship
- Vulnerable
- Economic

Special kinds of species

- Keystone
- Ecosystem engineers
- Indicator
- Umbrella
- Flagship
- Vulnerable
- Economic

Special kinds of species

- KeystoneEcosystem
- engineers
- Indicator
- Umbrella
- Flagship
- Vulnerable
- Economic

"Rarity precedes extinction" (Darwin 1859)

Special kinds of species

- Keystone
- Ecosystem engineers
- Indicator
- Umbrella
- Flagship
- Vulnerable
- Economic

	Domain/ kingdom	Phylum	Number of described species	Number of estimated species	Percent described
	Viruses	_	5,000	500,000	1
	Bacteria	_	4,760	1,000,000	0.5
	Archaea	-	259	Unknown	
A realistic total #?	Eukarya				
	Protista ^b	-	80,000	500,000	16
	Fungi	Eumycota	80,000	1,500,000	5
	Plantae	Bryophyta	15,000	30,000	50
		Trachaeophyta	272,655	500,000	55
	Animalia	Porifera	15,000		
		Cnidaria	10,000		
		Platyhelminthes	25,000	-	-
		Rotifera	1,800	-	_
		Bryozoa	5,000	-	-
		Nematoda	25,000	400,000	6
		Arthropoda	1,065,000	9,000,000	12
		Annelida	15,000	-	-
		Mollusca	70,000	200,000	35
		Echinodermata	7,000	-	
		Chordata	57,739	60,000	96

"Major phyla listed have >1000 described species. Protista lumps 5–7 distinct kingdoms within the domain Eukaryota.

One famous older extrapolation How many species are there? NIGEL E. STORK Biodiversity Division, Ento 5BD, UK 221 STEP 4. Add ground fauna. 30,000,000 spp of tropical arthropods STEP 3. Add other 20,000,000 spp of canopy arthropods 8,000,000 spp No. of canopy beetle spp. specific to 50,000 spp. of t Terry Erwin of canopy beetles STEP 1. No. of " 162 spp host-specific" specie DATA. Sample of beetles from 19 tree 1,200 spp Fig. 1. Erwin's (1982) method of estimating global diversity of tropical insects. Note that on this scale the thickness of the lines for the DATA and STEP 1 levels should be 0.0016 mm and 0.012 mm thick.

Some recent advances in detecting species

Do we need them all?

 Some competing hypotheses (plus null)

ISNA

Biodiversity

Figure 1. Examples of several proposed hypothetical associations between biotic diversity and ecosystem function. Function refers to hispechemical processes of ecosystems. Authors for the hypotheses are as foit hows: treet-popularity, Ehrich and Ehrich (1981); non-linear, Carpenter (1996); redundancy, Walker (1992); and Lanctin and Brown (1983); diasyncratic, Naeem et al. (1995); humped-babyed, Rosenzweig and Abraun sky (1994); and compensating/keystone. Sala et al. Naeem (1998)

Miami of Ohio agroecosystem plots & mesocosms

α and β Diversity example

Characteristics of 30-m transects established on the rims of six Carolina bays at Lewis Ocean Bay Heritag Table 1 . In each bay, two transects were established, one on a side rim and one on an end rim. Means are present d error, n = 6. Superscript letters indicate no significant ($P \ge 0.05$) differences between side and end transe tandard er ation Change (m) Axis Length (SD)

Gamma diversity (γ)

Diversity indices

- Combination of _____ and _
 - Examples: Shannon index, Simpson index
- Some issues
 - What do they really mean?
 - Describes an overall community, not

THE NONCONCEPT OF SPECIES DIVERSITY: A CRITIQUE AND ALTERNATIVE PARAMETERS¹

STUART H. HURLBERT² (1971) Division of Biological Control, Department of Entomology, University of California, Riverside

Abstract. The recent literature on species diversity contains many semantic, conceptual, and technical problems. It is suggested that, as a result of these problems, species diversity has become a meaningless concept, that the term be abandoned, and that ecologists take a more critical approach to species-number relations and rely less on information theoretic and other analogies. As multispecific collections of organisms posses numerous satisfical proper-

Some explanations of biodiversity

Niches and competition

When the British biologist J. B. S. Haldane

was asked by a group of theologians what

one could conclude as to the nature of the

is said to have answered, "An inordinate

- Species area relationship
- Intermediate disturbance hypothesis
- Productivity

fondness for beetles"

Inordinate Fondness Creator from a study of His creation, Haldane eetles

Niches and competition

- Gause's law of competitive exclusion
- Resource partitioning leads to...

Species-area equation

- •?
- But, ecologists often do what to the equation?
- z often set to ____
- Implications for conservation?

Intermediate disturbance hypothesis

Local scale Productivity Diversity in 30 freshwater Mechanism? ponds of Michigan ol 20 40 60 80 100 Productivity (g cm⁻²/15 d) Chase & Leibold (2002, Nature) 36 Animal richness 18 0L 20 40 60 80 100 But, see Adler et al. (2011, Nature) Productivity (g cm⁻²/15 d)

Geographic trends: An old stand-by

Hotspots of diversity Are some places more important to protect?

Таха # of # % Endemic Species Endemic 13,000 Plants 11,600 89.2 Mammals 155 144 92.9 Birds 310 181 58.4 Reptiles 384 367 95.6 Amphibs 230 229 99.6 Fishes 164 97 59.1

Biodiversity hotspots

- 25 hotspots; 1.4% of land cover of Earth
- Contains 44% vascular plants; 35% of 4 vertebrate • groups

Wait a minute. What about...

How global biodiversity hotspots may go unrecognized: lessons from the North American Coastal Plain

D. Bruce Means⁴, Jennife

	Species richness		Endemics (%)		
	GCP	CPFP	GCP	CPFP	
Vascular plants	6200	5470	1816 (29.3)	1625 (29.7)	
Freshwater fishes (full species only)	424	364	1.38 (32.5)	83 (22.8)	
Amphibians	122	120	57 (46.7)	44 (36.7)	
	205	105	45 (42.9)	37 (35.2)	
Reptiles	291	230	113 (38.8)	80 (34.8)	
	177	123	50 (28.2)	33 (26.8)	
Breeding Birds	N/A	N/A	51	43	
	274	253	6 (2.2)	5 (2.1)	
Mammals	306	204	114 (37.3)	70 (34.3)	
	1.00		91615	5 (5 9)	

Reed F. Noss¹*, William J. Platt², Bruce A. Sorrie³, Alan S. Weakley³, and Robert K

Cincotta et al. (2000)

Languages and hotspots

• "A total of 3,202 languages, nearly half of those on Earth, currently are found in the 35 biodiversity hotspots"

War(?) and hotspots • 80% of major armed conflicts between 1950 and 2000 took place in biodiversity hotspots

Figure 1. The world's 34 biodiversity botspots (numbers) (Mittermeter et al. 2004) and the location of all armed conflicts with over 1000 casualities between 1950 and 2000 (points) (conflict data from Arnold 1991; Sarkees

Humans and hotspots

7

Hotspots vs. NGO offices

Kareiva & Marvier (2003)

Biodiversity coldspots?

- Kareiva & Marvier (2003, Amer. Sci.)
- If hotspots are so important, what about the rest are they then *coldspots*?
- Any problems with hotspots?

Now what should we do?

• The rest? Relative cost?

